Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于CNN-LSTM-AM模型的短期電力負荷預(yù)測研究

來源:電工電氣發(fā)布時間:2025-05-27 15:27 瀏覽次數(shù):34

基于CNN-LSTM-AM模型的短期電力負荷預(yù)測研究

王生1,張和茂1,王曉榮2
(1 山西大同大學 機電工程學院,山西 大同 037000;
2 國網(wǎng)河北省電力有限公司承德供電公司,河北 承德 067000)
 
    摘 要:為應(yīng)對氣象因素變化時電力負荷波動對電力系統(tǒng)穩(wěn)定性的影響,探究了一種引入注意力機制的 CNN-LSTM 組合模型來預(yù)測短期電力負荷的波動。電力負荷受多維度氣候因素的復(fù)雜耦合影響,為有效表征這些非線性、時變的氣候-負荷關(guān)聯(lián)特性,構(gòu)建了融合溫度、降水量、濕度和風速的多特征輸入模型。采用卷積神經(jīng)網(wǎng)絡(luò)(CNN)捕捉數(shù)據(jù)中的局部氣候模式,通過滑動窗口機制提取關(guān)鍵氣象事件的時空特征;將特征向量輸入長短期記憶(LSTM)網(wǎng)絡(luò),其門控機制可有效建模氣候因素與負荷響應(yīng)的延時效應(yīng);引入注意力機制(AM)動態(tài)量化各氣候要素的時序重要性。仿真實驗對比結(jié)果表明,CNN-LSTMAM 模型比傳統(tǒng) LSTM 和 CNN-LSTM 模型具有更好的預(yù)測精度。
    關(guān)鍵詞: 卷積神經(jīng)網(wǎng)絡(luò);長短期記憶;注意力機制;電力負荷預(yù)測
    中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2025)05-0057-05
 
Research on Short-Term Power Load Forecasting Based on
CNN-LSTM-AM Model
 
WANG Sheng1, ZHANG He-mao1, WANG Xiao-rong2
(1 College of Mechanical and Electrical Engineering, Shanxi Datong University, Datong 037000, China;
2 Chengde Power Supply Company of State Grid Hebei Electric Power Co., Ltd, Chengde 067000, China)
 
    Abstract: In order to cope with the influence of power load fluctuation on the stability of power system when meteoro logical factors change, a CNN-LSTM combination model with attention mechanism was explored to predict the fluctuation of short-term power load. The power load was affected by the complex coupling of multi-dimensional climate factors, in order to effectively characterize these nonlinear and time-varying climate-load correlation characteristics, a multi-feature input model integrating temperature, precipitation, humidity and wind speed was constructed.This paper used the convolutional neural network(CNN) to capture the local climate patterns in the data, and the time-conditioning characteristics of key meteorological events were extracted through the sliding window mechanism. Then, the feature vectors were fed into the long short-term memory (LSTM) network, and its gating mechanism can effectively model the delay effect of climate factors and load response.Finally, the attention mechanism (AM) was introduced to dynamically quantify the temporal importance of each climate element. Through the comparison of simulation experiments, the results show that the CNN-LSTM-AM model has better prediction accuracy than the traditional LSTM and CNN-LSTM models.
    Key words: convolutional neural network; long short-term memory; attention mechanism; power load forecasting
 
參考文獻
[1] 張智剛,康重慶. 碳中和目標下構(gòu)建新型電力系統(tǒng)的挑戰(zhàn)與展望[J] . 中國電機工程學報,2022,42(8) :2806-2818.
[2] 舒印彪,陳國平,賀靜波,等. 構(gòu)建以新能源為主體的新型電力系統(tǒng)框架研究[J] . 中國工程科學, 2021,23(6) :61-69.
[3] WANG Han, ZHANG Ning, DU Ershun, et al.A comprehensive review for wind, solar, and electrical load forecasting methods[J].Global Energy Interconnection,2022,5(1) :9-30.
[4] 魏泓屹,卓振宇,張寧,等. 中國電力系統(tǒng)碳達峰·碳中和轉(zhuǎn)型路徑優(yōu)化與影響因素分析[J]. 電力系統(tǒng)自動化,2022,46(19) :1-12.
[5] 蔡幟,張國芳,王淼,等. 電力市場環(huán)境下區(qū)域和省級電網(wǎng)協(xié)同安全校核及校正[J] . 中國電機工程學報,2023,43(10) :3758-3767.
[6] LINDBERG K B, SELJOM P, MADSEN H, et al.Longterm electricity load forecasting :Current and future trends[J].Utilities Policy,2019,58 :102-119.
[7] 王歡,李鵬,曹敏,等. 基于 CNN_BiLSTM 的長短期電力負荷預(yù)測方法[J]. 計算機仿真,2022,39(3) :96-103.
[8] 錢育樹,孔鈺婷,黃聰. 電力負荷預(yù)測研究綜述[J] .四川電力技術(shù),2023,46(4) :37-43.
[9] 韓富佳,王曉輝,喬驥,等. 基于人工智能技術(shù)的新型電力系統(tǒng)負荷預(yù)測研究綜述[J] . 中國電機工程學報,2023,43(22) :8569-8591.
[10] 趙東雷,李丹華,庫巍,等. 基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)短期負荷預(yù)測[J] . 華北電力技術(shù),2017(9) :22-27.
[11] 夏超鵬,洪宇,劉新山,等. 基于 LSTM 深度學習網(wǎng)絡(luò)的中長期電力負荷預(yù)測[J] . 自動化與儀器儀表,2024(7) :343-346.
[12] CHEN Xinfang, CHEN Weiran, DINAVAHI Venkata, et al.Short-Term Load Forecasting and Associated Weather Variables Prediction Using ResNet-LSTM Based Deep Learning[J].IEEE Access,2023,11 :5393-5405.
[13] 孟磊. 基于 CNN-LSTM 網(wǎng)絡(luò)的電力負荷預(yù)測[J]. 機電信息,2023(7) :7-10.
[14] 林美. 基于深度學習方法的短期電力負荷預(yù)測[D]. 哈爾濱:東北農(nóng)業(yè)大學,2022.
[15] WANG Bin. A Zipf-plot based normalization method for high-throughput RNA-seq data[J].PLoS One,2020,15(4) :e0230594.